cGMP signals mainly through cAMP kinase in permeabilized murine aorta.

نویسندگان

  • René Wörner
  • Robert Lukowski
  • Franz Hofmann
  • Jörg W Wegener
چکیده

GMP affects vascular tone by multiple mechanisms, including inhibition of the Rho/Rho kinase-mediated Ca(2+) sensitization, a process identified as Ca(2+) desensitization. Ca(2+) desensitization is mediated probably by both cGMP- and cAMP-dependent protein kinases (cGKI and PKA). We investigate to which extent Ca(2+) desensitization is initiated by cGKI and PKA. cGMP/cAMP-induced relaxation was studied at constant [Ca(2+)] in permeabilized aortas from wild-type and cGKI-deficient mice. [Ca(2+)] increased aortic tone in the absence and presence of 50 microM GTPgammaS with EC(50) values of 160 and 30 nM, respectively. In the absence of GTPgammaS, the EC(50) for [Ca(2+)] was shifted rightward from 0.16 microM to 0.43 and 0.82 microM by 1 and 300 microM 8-bromo-cGMP (8-Br-cGMP), and to 8 microM by 10 microM Y-27632. Contractions induced by 300 nM [Ca(2+)] were relaxed by 8-Br-cGMP with an EC(50) of 2.6 microM. Surprisingly, [Ca(2+)]-induced contractions were also relaxed by 8-Br-cGMP in aortas from cGKI(-/-) mice (EC(50) of 19 microM). Western blot analysis of the vasodilator-stimulated phosphoprotein indicated "cross"-activation of PKA by 1 mM 8-Br-cGMP in aortic smooth muscle cells from cGKI(-/-) mice. Indeed, the PKA inhibitor peptide (PKI 5-24) completely abolished the relaxant effect of 8-Br-cGMP in muscles from cGKI(-/-) mice and to 65% in wild-type aortas. The thromboxane analogue U-46619 induced contraction at constant [Ca(2+)], which was only partially relaxed by 8-Br-cGMP but completely relaxed by Y-27632. The effect of 8-Br-cGMP on U-46619-induced contraction was attenuated by PKI 5-24. These results show that cGKI has only a small inhibitory effect on Ca(2+) sensitization in murine aortas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cAMP inhibits IP3-dependent Ca release by preferential activation of cGMP-primed PKG

Murthy, Karnam S. cAMP inhibits IP3-dependent Ca21 release by preferential activation of cGMP-primed PKG. Am J Physiol Gastrointest Liver Physiol 281: G1238–G1245, 2001.— The singular effects and interplay of cAMPand cGMP-dependent protein kinase (PKA and PKG) on Ca21 mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited in...

متن کامل

cAMP inhibits IP(3)-dependent Ca(2+) release by preferential activation of cGMP-primed PKG.

The singular effects and interplay of cAMP- and cGMP-dependent protein kinase (PKA and PKG) on Ca(2+) mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of cAMP and cGMP caused synergistic inhib...

متن کامل

Regulation of glucose transport in aortic smooth muscle cells by cAMP and cGMP.

We have studied the ability of cGMP and cAMP to modulate platelet-derived growth factor (PDGF)-stimulated 2-deoxy-D-glucose (deGlc) transport in primary cultures of vascular smooth muscle cells (VMSC) from rat aorta. PDGF stimulated deGlc transport in a time- and concentration-dependent manner. 8-Bromo-cGMP and atrial natriuretic peptide(1-28) [ANP(1-28)] were found to reduce PDGF-stimulated de...

متن کامل

cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes.

RATIONALE cAMP and cGMP are intracellular second messengers involved in heart pathophysiology. cGMP can potentially affect cAMP signals via cGMP-regulated phosphodiesterases (PDEs). OBJECTIVE To study the effect of cGMP signals on the local cAMP response to catecholamines in specific subcellular compartments. METHODS AND RESULTS We used real-time FRET imaging of living rat ventriculocytes e...

متن کامل

Activation of cGMP-dependent protein kinase Iα and cAMP-dependent protein kinase A isoforms by cyclic nucleotides

Introduction cAMP and cGMP are second messengers that play important roles in intracellular signal transduction of various external stimuli. Major functions of both are the activation of cAMP-dependent protein kinase A (PKA) and cGMP-dependent protein kinase G (PKG), respectively. PKA and PKG are members of the serine-threonine protein kinase superfamily and are involved in the control of vario...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 1  شماره 

صفحات  -

تاریخ انتشار 2007